Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic PDEs

02/05/2021
by   Assyr Abdulle, et al.
0

Explicit stabilized integrators are an efficient alternative to implicit or semi-implicit methods to avoid the severe timestep restriction faced by standard explicit integrators applied to stiff diffusion problems. In this paper, we provide a fully discrete strong convergence analysis of a family of explicit stabilized methods coupled with finite element methods for a class of parabolic semilinear deterministic and stochastic partial differential equations. Numerical experiments including the semilinear stochastic heat equation with space-time white noise confirm the theoretical findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro