Convex Subspace Clustering by Adaptive Block Diagonal Representation
Subspace clustering is a class of extensively studied clustering methods and the spectral-type approaches are its important subclass whose key first step is to learn a coefficient matrix with block diagonal structure. To realize this step, sparse subspace clustering (SSC), low rank representation (LRR) and block diagonal representation (BDR) were successively proposed and have become the state-of-the-arts (SOTAs). Among them, the former two minimize their convex objectives by imposing sparsity and low rankness on the coefficient matrix respectively, but so-desired block diagonality cannot neccesarily be guaranteed practically while the latter designs a block diagonal matrix induced regularizer but sacrifices convexity. For solving this dilemma, inspired by Convex Biclustering, in this paper, we propose a simple yet efficient spectral-type subspace clustering method named Adaptive Block Diagonal Representation (ABDR) which strives to pursue so-desired block diagonality as BDR by coercively fusing the columns/rows of the coefficient matrix via a specially designed convex regularizer, consequently, ABDR naturally enjoys their merits and can adaptively form more desired block diagonality than the SOTAs without needing to prefix the number of blocks as done in BDR. Finally, experimental results on synthetic and real benchmarks demonstrate the superiority of ABDR.
READ FULL TEXT