CorrMatch: Label Propagation via Correlation Matching for Semi-Supervised Semantic Segmentation

06/07/2023
by   Boyuan Sun, et al.
0

In this paper, we present a simple but performant semi-supervised semantic segmentation approach, termed CorrMatch. Our goal is to mine more high-quality regions from the unlabeled images to leverage the unlabeled data more efficiently via consistency regularization. The key contributions of our CorrMatch are two novel and complementary strategies. First, we introduce an adaptive threshold updating strategy with a relaxed initialization to expand the high-quality regions. Furthermore, we propose to propagate high-confidence predictions through measuring the pairwise similarities between pixels. Despite its simplicity, we show that CorrMatch achieves great performance on popular semi-supervised semantic segmentation benchmarks. Taking the DeepLabV3+ framework with ResNet-101 backbone as our segmentation model, we receive a 76 mIoU score on the Pascal VOC 2012 segmentation benchmark with only 92 annotated images provided. We also achieve a consistent improvement over previous semi-supervised semantic segmentation models. Code will be made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset