CoShaRP: A Convex Program for Single-shot Tomographic Shape Sensing

12/08/2020
by   Ajinkya Kadu, et al.
0

We introduce single-shot X-ray tomography that aims to estimate the target image from a single cone-beam projection measurement. This linear inverse problem is extremely under-determined since the measurements are far fewer than the number of unknowns. Moreover, it is more challenging than conventional tomography where a sufficiently large number of projection angles forms the measurements, allowing for a simple inversion process. However, single-shot tomography becomes less severe if the target image is only composed of known shapes. Hence, the shape prior transforms a linear ill-posed image estimation problem to a non-linear problem of estimating the roto-translations of the shapes. In this paper, we circumvent the non-linearity by using a dictionary of possible roto-translations of the shapes. We propose a convex program CoShaRP to recover the dictionary-coefficients successfully. CoShaRP relies on simplex-type constraint and can be solved quickly using a primal-dual algorithm. The numerical experiments show that CoShaRP recovers shapes stably from moderately noisy measurements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset