CoT-MoTE: Exploring ConTextual Masked Auto-Encoder Pre-training with Mixture-of-Textual-Experts for Passage Retrieval

04/20/2023
by   Guangyuan Ma, et al.
0

Passage retrieval aims to retrieve relevant passages from large collections of the open-domain corpus. Contextual Masked Auto-Encoding has been proven effective in representation bottleneck pre-training of a monolithic dual-encoder for passage retrieval. Siamese or fully separated dual-encoders are often adopted as basic retrieval architecture in the pre-training and fine-tuning stages for encoding queries and passages into their latent embedding spaces. However, simply sharing or separating the parameters of the dual-encoder results in an imbalanced discrimination of the embedding spaces. In this work, we propose to pre-train Contextual Masked Auto-Encoder with Mixture-of-Textual-Experts (CoT-MoTE). Specifically, we incorporate textual-specific experts for individually encoding the distinct properties of queries and passages. Meanwhile, a shared self-attention layer is still kept for unified attention modeling. Results on large-scale passage retrieval benchmarks show steady improvement in retrieval performances. The quantitive analysis also shows a more balanced discrimination of the latent embedding spaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro