Counting invariant subspaces and decompositions of additive polynomials

11/30/2019
by   Joachim von zur Gathen, et al.
0

The functional (de)composition of polynomials is a topic in pure and computer algebra with many applications. The structure of decompositions of (suitably normalized) polynomials f(x) = g(h(x)) in F[x] over a field F is well understood in many cases, but less well when the degree of f is divisible by the positive characteristic p of F. This work investigates the decompositions of r-additive polynomials, where every exponent and also the field size is a power of r, which itself is a power of p. The decompositions of an r-additive polynomial f are intimately linked to the Frobenius-invariant subspaces of its root space V in the algebraic closure of F. We present an efficient algorithm to compute the rational Jordan form of the Frobenius automorphism on V. A formula of Fripertinger (2011) then counts the number of Frobenius-invariant subspaces of a given dimension and we derive the number of decompositions with prescribed degrees.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro