Covariance Matrices and Influence Scores for Mean Field Variational Bayes

02/26/2015
by   Ryan Giordano, et al.
0

Mean field variational Bayes (MFVB) is a popular posterior approximation method due to its fast runtime on large-scale data sets. However, it is well known that a major failing of MFVB is that it underestimates the uncertainty of model variables (sometimes severely) and provides no information about model variable covariance. We develop a fast, general methodology for exponential families that augments MFVB to deliver accurate uncertainty estimates for model variables -- both for individual variables and coherently across variables. MFVB for exponential families defines a fixed-point equation in the means of the approximating posterior, and our approach yields a covariance estimate by perturbing this fixed point. Inspired by linear response theory, we call our method linear response variational Bayes (LRVB). We also show how LRVB can be used to quickly calculate a measure of the influence of individual data points on parameter point estimates. We demonstrate the accuracy and scalability of our method by learning Gaussian mixture models for both simulated and real data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset