Cross-Document Language Modeling

01/02/2021
by   Avi Caciularu, et al.
10

We introduce a new pretraining approach for language models that are geared to support multi-document NLP tasks. Our cross-document language model (CD-LM) improves masked language modeling for these tasks with two key ideas. First, we pretrain with multiple related documents in a single input, via cross-document masking, which encourages the model to learn cross-document and long-range relationships. Second, extending the recent Longformer model, we pretrain with long contexts of several thousand tokens and introduce a new attention pattern that uses sequence-level global attention to predict masked tokens, while retaining the familiar local attention elsewhere. We show that our CD-LM sets new state-of-the-art results for several multi-text tasks, including cross-document event and entity coreference resolution, paper citation recommendation, and documents plagiarism detection, while using a significantly reduced number of training parameters relative to prior works.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro