Cross-Domain Style Mixing for Face Cartoonization

05/25/2022
by   Seungkwon Kim, et al.
0

Cartoon domain has recently gained increasing popularity. Previous studies have attempted quality portrait stylization into the cartoon domain; however, this poses a great challenge since they have not properly addressed the critical constraints, such as requiring a large number of training images or the lack of support for abstract cartoon faces. Recently, a layer swapping method has been used for stylization requiring only a limited number of training images; however, its use cases are still narrow as it inherits the remaining issues. In this paper, we propose a novel method called Cross-domain Style mixing, which combines two latent codes from two different domains. Our method effectively stylizes faces into multiple cartoon characters at various face abstraction levels using only a single generator without even using a large number of training images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset