Crossing Minimization in Perturbed Drawings

08/23/2018
by   Radoslav Fulek, et al.
0

Due to data compression or low resolution, nearby vertices and edges of a graph drawing may be bundled to a common node or arc. We model such a `compromised' drawing by a piecewise linear map φ:G→R^2. We wish to perturb φ by an arbitrarily small ε>0 into a proper drawing (in which the vertices are distinct points, any two edges intersect in finitely many points, and no three edges have a common interior point) that minimizes the number of crossings. An ε-perturbation, for every ε>0, is given by a piecewise linear map ψ_ε:G→R^2 with φ-ψ_ε<ε, where . is the uniform norm (i.e., norm). We present a polynomial-time solution for this optimization problem when G is a cycle and the map φ has no spurs (i.e., no two adjacent edges are mapped to overlapping arcs). We also show that the problem becomes NP-complete (i) when G is an arbitrary graph and φ has no spurs, and (ii) when φ may have spurs and G is a cycle or a union of disjoint paths.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro