CUNI Systems for the Unsupervised News Translation Task in WMT 2019
In this paper we describe the CUNI translation system used for the unsupervised news shared task of the ACL 2019 Fourth Conference on Machine Translation (WMT19). We follow the strategy of Artexte et al. (2018b), creating a seed phrase-based system where the phrase table is initialized from cross-lingual embedding mappings trained on monolingual data, followed by a neural machine translation system trained on synthetic parallel data. The synthetic corpus was produced from a monolingual corpus by a tuned PBMT model refined through iterative back-translation. We further focus on the handling of named entities, i.e. the part of vocabulary where the cross-lingual embedding mapping suffers most. Our system reaches a BLEU score of 15.3 on the German-Czech WMT19 shared task.
READ FULL TEXT