D-Cliques: Compensating NonIIDness in Decentralized Federated Learning with Topology

04/15/2021
by   Aurélien Bellet, et al.
6

The convergence speed of machine learning models trained with Federated Learning is significantly affected by non-independent and identically distributed (non-IID) data partitions, even more so in a fully decentralized setting without a central server. In this paper, we show that the impact of local class bias, an important type of data non-IIDness, can be significantly reduced by carefully designing the underlying communication topology. We present D-Cliques, a novel topology that reduces gradient bias by grouping nodes in interconnected cliques such that the local joint distribution in a clique is representative of the global class distribution. We also show how to adapt the updates of decentralized SGD to obtain unbiased gradients and implement an effective momentum with D-Cliques. Our empirical evaluation on MNIST and CIFAR10 demonstrates that our approach provides similar convergence speed as a fully-connected topology with a significant reduction in the number of edges and messages. In a 1000-node topology, D-Cliques requires 98 edges and 96 small-world topology across cliques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro