DAMO: Deep Agile Mask Optimization for Full Chip Scale

07/21/2020
by   Guojin Chen, et al.
0

Continuous scaling of the VLSI system leaves a great challenge on manufacturing and optical proximity correction (OPC) is widely applied in conventional design flow for manufacturability optimization. Traditional techniques conducted OPC by leveraging a lithography model and suffered from prohibitive computational overhead, and mostly focused on optimizing a single clip without addressing how to tackle the full chip. In this paper, we present DAMO, a high performance and scalable deep learning-enabled OPC system for full chip scale. It is an end-to-end mask optimization paradigm which contains a Deep Lithography Simulator (DLS) for lithography modeling and a Deep Mask Generator (DMG) for mask pattern generation. Moreover, a novel layout splitting algorithm customized for DAMO is proposed to handle the full chip OPC problem. Extensive experiments show that DAMO outperforms the state-of-the-art OPC solutions in both academia and industrial commercial toolkit.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro