Data-driven Construction of Hierarchical Matrices with Nested Bases

06/04/2022
by   Difeng Cai, et al.
0

Hierarchical matrices provide a powerful representation for significantly reducing the computational complexity associated with dense kernel matrices. For general kernel functions, interpolation-based methods are widely used for the efficient construction of hierarchical matrices. In this paper, we present a fast hierarchical data reduction (HiDR) procedure with O(n) complexity for the memory-efficient construction of hierarchical matrices with nested bases where n is the number of data points. HiDR aims to reduce the given data in a hierarchical way so as to obtain O(1) representations for all nearfield and farfield interactions. Based on HiDR, a linear complexity ℋ^2 matrix construction algorithm is proposed. The use of data-driven methods enables better efficiency than other general-purpose methods and flexible computation without accessing the kernel function. Experiments demonstrate significantly improved memory efficiency of the proposed data-driven method compared to interpolation-based methods over a wide range of kernels. Though the method is not optimized for any special kernel, benchmark experiments for the Coulomb kernel show that the proposed general-purpose algorithm offers competitive performance for hierarchical matrix construction compared to several state-of-the-art algorithms for the Coulomb kernel.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro