Data-Driven Distributionally Robust Electric Vehicle Balancing for Autonomous Mobility-on-Demand Systems under Demand and Supply Uncertainties

by   Sihong He, et al.

Electric vehicles (EVs) are being rapidly adopted due to their economic and societal benefits. Autonomous mobility-on-demand (AMoD) systems also embrace this trend. However, the long charging time and high recharging frequency of EVs pose challenges to efficiently managing EV AMoD systems. The complicated dynamic charging and mobility process of EV AMoD systems makes the demand and supply uncertainties significant when designing vehicle balancing algorithms. In this work, we design a data-driven distributionally robust optimization (DRO) approach to balance EVs for both the mobility service and the charging process. The optimization goal is to minimize the worst-case expected cost under both passenger mobility demand uncertainties and EV supply uncertainties. We then propose a novel distributional uncertainty sets construction algorithm that guarantees the produced parameters are contained in desired confidence regions with a given probability. To solve the proposed DRO AMoD EV balancing problem, we derive an equivalent computationally tractable convex optimization problem. Based on real-world EV data of a taxi system, we show that with our solution the average total balancing cost is reduced by 14.49 mobility fairness and charging fairness are improved by 15.78 respectively, compared to solutions that do not consider uncertainties.


page 1

page 9

page 11


Data-Driven Distributionally Robust Electric Vehicle Balancing for Mobility-on-Demand Systems under Demand and Supply Uncertainties

As electric vehicle (EV) technologies become mature, EV has been rapidly...

Robust Electric Vehicle Balancing of Autonomous Mobility-On-Demand System: A Multi-Agent Reinforcement Learning Approach

Electric autonomous vehicles (EAVs) are getting attention in future auto...

A Robust and Constrained Multi-Agent Reinforcement Learning Framework for Electric Vehicle AMoD Systems

Electric vehicles (EVs) play critical roles in autonomous mobility-on-de...

On the Interaction between Autonomous Mobility on Demand Systems and Power Distribution Networks -- An Optimal Power Flow Approach

In future transportation systems, the charging behavior of electric Auto...

Spatial, Social and Data Gaps in On-Demand Mobility Services: Towards a Supply-Oriented MaaS

After a decade of on-demand mobility services that change spatial behavi...

Spaceprint: a Mobility-based Fingerprinting Scheme for Public Spaces

In this paper, we address the problem of how automated situation-awarene...

A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties

Modern electric power systems have witnessed rapidly increasing penetrat...

Please sign up or login with your details

Forgot password? Click here to reset