Data Preprocessing for Evaluation of Recommendation Models in E-Commerce

10/25/2019
by   Namrata Chaudhary, et al.
0

E-commerce businesses employ recommender models to assist in identifying a personalized set of products for each visitor. To accurately assess the recommendations' influence on customer clicks and buys, three target areas – customer behavior, data collection, user-interface – will be explored for possible sources of erroneous data. Varied customer behavior misrepresents the recommendations' true influence on a customer due to the presence of B2B interactions and outlier customers. Non-parametric statistical procedures for outlier removal are delineated and other strategies are investigated to account for the effect of a large percentage of new customers or high bounce rates. Subsequently, in data collection we identify probable misleading interactions in the raw data, propose a robust method of tracking unique visitors, and accurately attributing the buy influence for combo products. Lastly, user-interface issues discuss the possible problems caused due to the recommendation widget's positioning on the e-commerce website and the stringent conditions that should be imposed when utilizing data from the product listing page. This collective methodology results in an exact and valid estimation of the customer's interactions influenced by the recommendation model in the context of standard industry metrics, such as Click-through rates, Buy-through rates, and Conversion revenue.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset