DeClassifier: Class-Inheritance Inference Engine for Optimized C++ Binaries

Recovering class inheritance from C++ binaries has several security benefits including problems such as decompilation and program hardening. Thanks to the optimization guidelines prescribed by the C++ standard, commercial C++ binaries tend to be optimized. While state-of-the-art class inheritance inference solutions are effective in dealing with unoptimized code, their efficacy is impeded by optimization. Particularly, constructor inlining--or worse exclusion--due to optimization render class inheritance recovery challenging. Further, while modern solutions such as MARX can successfully group classes within an inheritance sub-tree, they fail to establish directionality of inheritance, which is crucial for security-related applications (e.g. decompilation). We implemented a prototype of DeClassifier using Binary Analysis Platform (BAP) and evaluated DeClassifier against 16 binaries compiled using gcc under multiple optimization settings. We show that (1) DeClassifier can recover 94.5 tree under O0 and O2 optimizations respectively, (2) a combination of ctor+dtor analysis provides much better inference than ctor only analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset