Deep Evidential Regression

10/07/2019
by   Alexander Amini, et al.
14

Deterministic neural networks (NNs) are increasingly being deployed in safety critical domains, where calibrated, robust and efficient measures of uncertainty are crucial. While it is possible to train regression networks to output the parameters of a probability distribution by maximizing a Gaussian likelihood function, the resulting model remains oblivious to the underlying confidence of its predictions. In this paper, we propose a novel method for training deterministic NNs to not only estimate the desired target but also the associated evidence in support of that target. We accomplish this by placing evidential priors over our original Gaussian likelihood function and training our NN to infer the hyperparameters of our evidential distribution. We impose priors during training such that the model is penalized when its predicted evidence is not aligned with the correct output. Thus the model estimates not only the probabilistic mean and variance of our target but also the underlying uncertainty associated with each of those parameters. We observe that our evidential regression method learns well-calibrated measures of uncertainty on various benchmarks, scales to complex computer vision tasks, and is robust to adversarial input perturbations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset