Deep Learning for Channel Coding via Neural Mutual Information Estimation

03/07/2019
by   Rick Fritschek, et al.
0

End-to-end deep learning for communication systems, i.e., systems whose encoder and decoder are learned, has attracted significant interest recently, due to its performance which comes close to well-developed classical encoder-decoder designs. However, one of the drawbacks of current learning approaches is that a differentiable channel model is needed for the training of the underlying neural networks. In real-world scenarios, such a channel model is hardly available and often the channel density is not even known at all. Some works, therefore, focus on a generative approach, i.e., generating the channel from samples, or rely on reinforcement learning to circumvent this problem. We present a novel approach which utilizes a recently proposed neural estimator of mutual information. We use this estimator to optimize the encoder for a maximized mutual information, only relying on channel samples. Moreover, we show that our approach achieves the same performance as state-of-the-art end-to-end learning with perfect channel model knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro