Deep Learning for Low-Dose CT Denoising

by   Maryam Gholizadeh-Ansari, et al.

Low-dose CT denoising is a challenging task that has been studied by many researchers. Some studies have used deep neural networks to improve the quality of low-dose CT images and achieved fruitful results. In this paper, we propose a deep neural network that uses dilated convolutions with different dilation rates instead of standard convolution helping to capture more contextual information in fewer layers. Also, we have employed residual learning by creating shortcut connections to transmit image information from the early layers to later ones. To further improve the performance of the network, we have introduced a non-trainable edge detection layer that extracts edges in horizontal, vertical, and diagonal directions. Finally, we demonstrate that optimizing the network by a combination of mean-square error loss and perceptual loss preserves many structural details in the CT image. This objective function does not suffer from over smoothing and blurring effects caused by per-pixel loss and grid-like artifacts resulting from perceptual loss. The experiments show that each modification to the network improves the outcome while only minimally changing the complexity of the network.


page 5

page 12

page 13

page 14

page 15


Cascaded Convolutional Neural Networks with Perceptual Loss for Low Dose CT Denoising

Low Dose CT Denoising research aims to reduce the risks of radiation exp...

CT Image Denoising with Perceptive Deep Neural Networks

Increasing use of CT in modern medical practice has raised concerns over...

OARnet: Automated organs-at-risk delineation in Head and Neck CT images

A 3D deep learning model (OARnet) is developed and used to delineate 28 ...

CTformer: Convolution-free Token2Token Dilated Vision Transformer for Low-dose CT Denoising

Low-dose computed tomography (LDCT) denoising is an important problem in...

Low-Dose CT Denoising Using a Structure-Preserving Kernel Prediction Network

Low-dose CT has been a key diagnostic imaging modality to reduce the pot...

Please sign up or login with your details

Forgot password? Click here to reset