Deep Modulation Embedding
Deep neural network has recently shown very promising applications in different research directions and attracted the industry attention as well. Although the idea was introduced in the past but just recently the main limitation of using this class of algorithms is solved by enabling parallel computing on GPU hardware. Opening the possibility of hardware prototyping with proven superiority of this class of algorithm, trigger several research directions in communication system too. Among them cognitive radio, modulation recognition, learning based receiver and transceiver are already given very interesting result in simulation and real experimental evaluation implemented on software defined radio. Specifically, modulation recognition is mostly approached as a classification problem which is a supervised learning framework. But it is here addressed as an unsupervised problem with introducing new features for training, a new loss function and investigating the robustness of the pipeline against several mismatch conditions.
READ FULL TEXT