Deep Regionlets for Object Detection
A key challenge in generic object detection is being to handle large variations in object scale, poses, viewpoints, especially part deformations when determining the location for specified object categories. Recent advances in deep neural networks have achieved promising results for object detection by extending the traditional detection methodologies using the convolutional neural network architectures. In this paper, we make an attempt to incorporate another traditional detection schema, Regionlet into an end-to-end trained deep learning framework, and perform ablation studies on its behavior on multiple object detection datasets. More specifically, we propose a "region selection network" and a "gating network". The region selection network serves as a guidance on where to select regions to learn the features from. Additionally, the gating network serves as a local feature selection module to select and transform feature maps to be suitable for detection task. It acts as soft Regionlet selection and pooling. The proposed network is trained end-to-end without additional efforts. Extensive experiments and analysis on the PASCAL VOC dataset and Microsoft COCO dataset show that the proposed framework achieves comparable state-of-the-art results.
READ FULL TEXT