DeepGalaxy: Testing Neural Network Verifiers via Two-Dimensional Input Space Exploration

01/20/2022
by   Xuan Xie, et al.
0

Deep neural networks (DNNs) are widely developed and applied in many areas, and the quality assurance of DNNs is critical. Neural network verification (NNV) aims to provide formal guarantees to DNN models. Similar to traditional software, neural network verifiers could also contain bugs, which would have a critical and serious impact, especially in safety-critical areas. However, little work exists on validating neural network verifiers. In this work, we propose DeepGalaxy, an automated approach based on differential testing to tackle this problem. Specifically, we (1) propose a line of mutation rules, including model level mutation and specification level mutation, to effectively explore the two-dimensional input space of neural network verifiers; and (2) propose heuristic strategies to select test cases. We leveraged our implementation of DeepGalaxy to test three state-of-the-art neural network verifies, Marabou, Eran, and Neurify. The experimental results support the efficiency and effectiveness of DeepGalaxy. Moreover, five unique unknown bugs were discovered

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset