Defending Distributed Classifiers Against Data Poisoning Attacks

08/21/2020
by   Sandamal Weerasinghe, et al.
0

Support Vector Machines (SVMs) are vulnerable to targeted training data manipulations such as poisoning attacks and label flips. By carefully manipulating a subset of training samples, the attacker forces the learner to compute an incorrect decision boundary, thereby cause misclassifications. Considering the increased importance of SVMs in engineering and life-critical applications, we develop a novel defense algorithm that improves resistance against such attacks. Local Intrinsic Dimensionality (LID) is a promising metric that characterizes the outlierness of data samples. In this work, we introduce a new approximation of LID called K-LID that uses kernel distance in the LID calculation, which allows LID to be calculated in high dimensional transformed spaces. We introduce a weighted SVM against such attacks using K-LID as a distinguishing characteristic that de-emphasizes the effect of suspicious data samples on the SVM decision boundary. Each sample is weighted on how likely its K-LID value is from the benign K-LID distribution rather than the attacked K-LID distribution. We then demonstrate how the proposed defense can be applied to a distributed SVM framework through a case study on an SDR-based surveillance system. Experiments with benchmark data sets show that the proposed defense reduces classification error rates substantially (10 average).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset