Dementia Severity Classification under Small Sample Size and Weak Supervision in Thick Slice MRI

by   Reza Shirkavand, et al.

Early detection of dementia through specific biomarkers in MR images plays a critical role in developing support strategies proactively. Fazekas scale facilitates an accurate quantitative assessment of the severity of white matter lesions and hence the disease. Imaging Biomarkers of dementia are multiple and comprehensive documentation of them is time-consuming. Therefore, any effort to automatically extract these biomarkers will be of clinical value while reducing inter-rater discrepancies. To tackle this problem, we propose to classify the disease severity based on the Fazekas scale through the visual biomarkers, namely the Periventricular White Matter (PVWM) and the Deep White Matter (DWM) changes, in the real-world setting of thick-slice MRI. Small training sample size and weak supervision in form of assigning severity labels to the whole MRI stack are among the main challenges. To combat the mentioned issues, we have developed a deep learning pipeline that employs self-supervised representation learning, multiple instance learning, and appropriate pre-processing steps. We use pretext tasks such as non-linear transformation, local shuffling, in- and out-painting for self-supervised learning of useful features in this domain. Furthermore, an attention model is used to determine the relevance of each MRI slice for predicting the Fazekas scale in an unsupervised manner. We show the significant superiority of our method in distinguishing different classes of dementia compared to state-of-the-art methods in our mentioned setting, which improves the macro averaged F1-score of state-of-the-art from 61 PVWM, and from 58


page 4

page 11

page 12


Cross-Domain Self-Supervised Deep Learning for Robust Alzheimer's Disease Progression Modeling

Developing successful artificial intelligence systems in practice depend...

SB-SSL: Slice-Based Self-Supervised Transformers for Knee Abnormality Classification from MRI

The availability of large scale data with high quality ground truth labe...

Local semi-supervised approach to brain tissue classification in child brain MRI

Most segmentation methods in child brain MRI are supervised and are base...

2D Multi-Class Model for Gray and White Matter Segmentation of the Cervical Spinal Cord at 7T

The spinal cord (SC), which conveys information between the brain and th...

Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction of Thin-Slice MR Images

The thick-slice magnetic resonance (MR) images are often structurally bl...

Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector

We propose an attention-based method that aggregates local image feature...

Please sign up or login with your details

Forgot password? Click here to reset