Denoising without access to clean data using a partitioned autoencoder
Training a denoising autoencoder neural network requires access to truly clean data, a requirement which is often impractical. To remedy this, we introduce a method to train an autoencoder using only noisy data, having examples with and without the signal class of interest. The autoencoder learns a partitioned representation of signal and noise, learning to reconstruct each separately. We illustrate the method by denoising birdsong audio (available abundantly in uncontrolled noisy datasets) using a convolutional autoencoder.
READ FULL TEXT