Design and Analysis of Delayed Bit-Interleaved Coded Modulation with LDPC Codes

03/03/2021
by   Yihuan Liao, et al.
0

This paper investigates the design and performance of delayed bit-interleaved coded modulation (DBICM) with low-density parity-check (LDPC) codes. For Gray labeled square M-ary quadrature amplitude modulation (QAM) constellations, we investigate the optimal delay scheme with the largest spectrum efficiency of DBICM for a fixed maximum number of delayed time slots and a given signal-to-noise ratio. When analyzing the capacity of DBICM, we find two important properties: the capacity improvement due to delayed coded bits being mapped to the real and imaginary parts of the transmitted symbols are independent of each other; a pair of delay schemes with delayed coded bits having identical bit-channel capacity lead to equivalent DBICM capacity. Using these two properties, we efficiently optimize the delay scheme for any uniform Gray-QAM systems. Furthermore, these two properties enable efficient LDPC code designs regarding unequal error protection via bit-channel type classifications. Moreover, we use protograph-based extrinsic information transfer charts to jointly optimize degree distributions and channel assignments of LDPC codes and propose a constrained progressive edge growth like algorithm to jointly construct LDPC codes and bit-interleavers for DBICM, taking distinctive bit-channel's capacity into account. Simulation results demonstrate that the designed LDPC coded DBICM systems significantly outperform LDPC coded BICM systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset