Determination of the effective cointegration rank in high-dimensional time-series predictive regressions

04/24/2023
βˆ™
by   Puyi Fang, et al.
βˆ™
0
βˆ™

This paper proposes a new approach to identifying the effective cointegration rank in high-dimensional unit-root (HDUR) time series from a prediction perspective using reduced-rank regression. For a HDUR process 𝐱_tβˆˆβ„^N and a stationary series 𝐲_tβˆˆβ„^p of interest, our goal is to predict future values of 𝐲_t using 𝐱_t and lagged values of 𝐲_t. The proposed framework consists of a two-step estimation procedure. First, the Principal Component Analysis is used to identify all cointegrating vectors of 𝐱_t. Second, the co-integrated stationary series are used as regressors, together with some lagged variables of 𝐲_t, to predict 𝐲_t. The estimated reduced rank is then defined as the effective cointegration rank of 𝐱_t. Under the scenario that the autoregressive coefficient matrices are sparse (or of low-rank), we apply the Least Absolute Shrinkage and Selection Operator (or the reduced-rank techniques) to estimate the autoregressive coefficients when the dimension involved is high. Theoretical properties of the estimators are established under the assumptions that the dimensions p and N and the sample size T β†’βˆž. Both simulated and real examples are used to illustrate the proposed framework, and the empirical application suggests that the proposed procedure fares well in predicting stock returns.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
βˆ™ 05/05/2020

Modeling High-Dimensional Unit-Root Time Series

In this paper, we propose a new procedure to build a structural-factor m...
research
βˆ™ 06/30/2013

Sparse Principal Component Analysis for High Dimensional Vector Autoregressive Models

We study sparse principal component analysis for high dimensional vector...
research
βˆ™ 03/23/2020

On Consistency and Sparsity for High-Dimensional Functional Time Series with Application to Autoregressions

Modelling a large collection of functional time series arises in a broad...
research
βˆ™ 04/29/2023

Change point detection in low-rank VAR processes

Vector autoregressive (VAR) models are widely used in multivariate time ...
research
βˆ™ 08/29/2020

An autocovariance-based learning framework for high-dimensional functional time series

Many scientific and economic applications involve the analysis of high-d...
research
βˆ™ 02/09/2020

Segmenting High-dimensional Matrix-valued Time Series via Sequential Transformations

Modeling matrix-valued time series is an interesting and important resea...
research
βˆ™ 05/16/2023

Errors-in-variables FrΓ©chet Regression with Low-rank Covariate Approximation

FrΓ©chet regression has emerged as a promising approach for regression an...

Please sign up or login with your details

Forgot password? Click here to reset