DiaASQ: A Benchmark of Conversational Aspect-based Sentiment Quadruple Analysis
The rapid development of aspect-based sentiment analysis (ABSA) within recent decades shows great potential for real-world society. The current ABSA works, however, are mostly limited to the scenario of a single text piece, leaving the study in dialogue contexts unexplored. In this work, we introduce a novel task of conversational aspect-based sentiment quadruple analysis, namely DiaASQ, aiming to detect the sentiment quadruple of target-aspect-opinion-sentiment in a dialogue. DiaASQ bridges the gap between fine-grained sentiment analysis and conversational opinion mining. We manually construct a large-scale, high-quality Chinese dataset and also obtain the English version dataset via manual translation. We deliberately propose a neural model to benchmark the task. It advances in effectively performing end-to-end quadruple prediction and manages to incorporate rich dialogue-specific and discourse feature representations for better cross-utterance quadruple extraction. We finally point out several potential future works to facilitate the follow-up research of this new task. The DiaASQ data is open at https://github.com/unikcc/DiaASQ
READ FULL TEXT