Dialogue Modeling Via Hash Functions: Applications to Psychotherapy

04/26/2018
by   Sahil Garg, et al.
0

We propose a novel machine-learning framework for dialogue modeling which uses representations based on hash functions. More specifically, each person's response is represented by a binary hashcode where each bit reflects presence or absence of a certain text pattern in the response. Hashcodes serve as compressed text representations, allowing for efficient similarity search. Moreover, hashcode of one person's response can be used as a feature vector for predicting the hashcode representing another person's response. The proposed hashing model of dialogue is obtained by maximizing a novel lower bound on the mutual information between the hashcodes of consecutive responses. We apply our approach in psychotherapy domain, evaluating its effectiveness on a real-life dataset consisting of therapy sessions with patients suffering from depression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro