Differentially Private Learning of Undirected Graphical Models using Collective Graphical Models
We investigate the problem of learning discrete, undirected graphical models in a differentially private way. We show that the approach of releasing noisy sufficient statistics using the Laplace mechanism achieves a good trade-off between privacy, utility, and practicality. A naive learning algorithm that uses the noisy sufficient statistics "as is" outperforms general-purpose differentially private learning algorithms. However, it has three limitations: it ignores knowledge about the data generating process, rests on uncertain theoretical foundations, and exhibits certain pathologies. We develop a more principled approach that applies the formalism of collective graphical models to perform inference over the true sufficient statistics within an expectation-maximization framework. We show that this learns better models than competing approaches on both synthetic data and on real human mobility data used as a case study.
READ FULL TEXT