Discrete-Convex-Analysis-Based Framework for Warm-Starting Algorithms with Predictions

05/20/2022
by   Shinsaku Sakaue, et al.
0

Augmenting algorithms with learned predictions is a promising approach for going beyond worst-case bounds. Dinitz, Im, Lavastida, Moseley, and Vassilvitskii (2021) have demonstrated that a warm start with learned dual solutions can improve the time complexity of the Hungarian method for weighted perfect bipartite matching. We extend and improve their framework in a principled manner via discrete convex analysis (DCA), a discrete analog of convex analysis. We show the usefulness of our DCA-based framework by applying it to weighted perfect bipartite matching, weighted matroid intersection, and discrete energy minimization for computer vision. Our DCA-based framework yields time complexity bounds that depend on the ℓ_∞-distance from a predicted solution to an optimal solution, which has two advantages relative to the previous ℓ_1-distance-dependent bounds: time complexity bounds are smaller, and learning of predictions is more sample efficient. We also discuss whether to learn primal or dual solutions from the DCA perspective.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset