Discrete Optimization Methods for Group Model Selection in Compressed Sensing

by   Bubacarr Bah, et al.

In this article we study the problem of signal recovery for group models. More precisely for a given set of groups, each containing a small subset of indices, and for given linear sketches of the true signal vector which is known to be group-sparse in the sense that its support is contained in the union of a small number of these groups, we study algorithms which successfully recover the true signal just by the knowledge of its linear sketches. We derive model projection complexity results and algorithms for more general group models than the state-of-the-art. We consider two versions of the classical Iterative Hard Thresholding algorithm (IHT). The classical version iteratively calculates the exact projection of a vector onto the group model, while the approximate version (AM-IHT) uses a head- and a tail-approximation iteratively. We apply both variants to group models and analyse the two cases where the sensing matrix is a Gaussian matrix and a model expander matrix. To solve the exact projection problem on the group model, which is known to be equivalent to the maximum weight coverage problem, we use discrete optimization methods based on dynamic programming and Benders' Decomposition. The head- and tail-approximations are derived by a classical greedy-method and LP-rounding, respectively.


Group-Sparse Model Selection: Hardness and Relaxations

Group-based sparsity models are proven instrumental in linear regression...

Optimization for Compressed Sensing: the Simplex Method and Kronecker Sparsification

In this paper we present two new approaches to efficiently solve large-s...

Robust Compressed Sensing Under Matrix Uncertainties

Compressed sensing (CS) shows that a signal having a sparse or compressi...

Tight Measurement Bounds for Exact Recovery of Structured Sparse Signals

Standard compressive sensing results state that to exactly recover an s ...

Fast Algorithms for Delta-Separated Sparsity Projection

We describe a fast approximation algorithm for the Δ-separated sparsity ...

Are good local minima wide in sparse recovery?

The idea of compressed sensing is to exploit representations in suitable...

Discrete logarithm problem in some families of sandpile groups

Biggs proposed the sandpile group of certain modified wheel graphs for c...

Please sign up or login with your details

Forgot password? Click here to reset