DisenBooth: Disentangled Parameter-Efficient Tuning for Subject-Driven Text-to-Image Generation
Given a small set of images of a specific subject, subject-driven text-to-image generation aims to generate customized images of the subject according to new text descriptions, which has attracted increasing attention in the community recently. Current subject-driven text-to-image generation methods are mainly based on finetuning a pretrained large-scale text-to-image generation model. However, these finetuning methods map the images of the subject into an embedding highly entangled with subject-identity-unrelated information, which may result in the inconsistency between the generated images and the text descriptions and the changes in the subject identity. To tackle the problem, we propose DisenBooth, a disentangled parameter-efficient tuning framework for subject-driven text-to-image generation. DisenBooth enables generating new images that simultaneously preserve the subject identity and conform to the text descriptions, by disentangling the embedding into an identity-related and an identity-unrelated part. Specifically, DisenBooth is based on the pretrained diffusion models and conducts finetuning in the diffusion denoising process, where a shared identity embedding and an image-specific identity-unrelated embedding are utilized jointly for denoising each image. To make the two embeddings disentangled, two auxiliary objectives are proposed. Additionally, to improve the finetuning efficiency, a parameter-efficient finetuning strategy is adopted. Extensive experiments show that our DisenBooth can faithfully learn well-disentangled identity-related and identity-unrelated embeddings. With the shared identity embedding, DisenBooth demonstrates superior subject-driven text-to-image generation ability. Additionally, DisenBooth provides a more flexible and controllable framework with different combinations of the disentangled embeddings.
READ FULL TEXT