Disjoint Contrastive Regression Learning for Multi-Sourced Annotations
Large-scale datasets are important for the development of deep learning models. Such datasets usually require a heavy workload of annotations, which are extremely time-consuming and expensive. To accelerate the annotation procedure, multiple annotators may be employed to label different subsets of the data. However, the inconsistency and bias among different annotators are harmful to the model training, especially for qualitative and subjective tasks.To address this challenge, in this paper, we propose a novel contrastive regression framework to address the disjoint annotations problem, where each sample is labeled by only one annotator and multiple annotators work on disjoint subsets of the data. To take account of both the intra-annotator consistency and inter-annotator inconsistency, two strategies are employed.Firstly, a contrastive-based loss is applied to learn the relative ranking among different samples of the same annotator, with the assumption that the ranking of samples from the same annotator is unanimous. Secondly, we apply the gradient reversal layer to learn robust representations that are invariant to different annotators. Experiments on the facial expression prediction task, as well as the image quality assessment task, verify the effectiveness of our proposed framework.
READ FULL TEXT