Distill Gold from Massive Ores: Efficient Dataset Distillation via Critical Samples Selection
Data-efficient learning has drawn significant attention, especially given the current trend of large multi-modal models, where dataset distillation can be an effective solution. However, the dataset distillation process itself is still very inefficient. In this work, we model the distillation problem with reference to information theory. Observing that severe data redundancy exists in dataset distillation, we argue to put more emphasis on the utility of the training samples. We propose a family of methods to exploit the most valuable samples, which is validated by our comprehensive analysis of the optimal data selection. The new strategy significantly reduces the training cost and extends a variety of existing distillation algorithms to larger and more diversified datasets, e.g. in some cases only 0.04 comparable distillation performance. Moreover, our strategy consistently enhances the performance, which may open up new analyses on the dynamics of distillation and networks. Our method is able to extend the distillation algorithms to much larger-scale datasets and more heterogeneous datasets, e.g. ImageNet-1K and Kinetics-400. Our code will be made publicly available.
READ FULL TEXT