Distributed no-regret edge resource allocation with limited communication
To accommodate low latency and computation-intensive services, such as the Internet-of-Things (IoT), 5G networks are expected to have cloud and edge computing capabilities. To this end, we consider a generic network setup where devices, performing analytics-related tasks, can partially process a task and offload its remainder to base stations, which can then reroute it to cloud and/or to edge servers. To account for the potentially unpredictable traffic demands and edge network dynamics, we formulate the resource allocation as an online convex optimization problem with service violation constraints and allow limited communication between neighboring nodes. To address the problem, we propose an online distributed (across the nodes) primal-dual algorithm and prove that it achieves sublinear regret and violation; in fact, the achieved bound is of the same order as the best known centralized alternative. Our results are further supported using the publicly available Milano dataset.
READ FULL TEXT