Does Adding Physical Realism to Virtual Reality Training Reduce Time Compression?
Virtual reality (VR) is known to cause a "time compression" effect, where the time spent in VR feels to pass faster than the effective elapsed time. Our goal with this research is to investigate if the physical realism of a VR experience reduces the time compression effect on a gas monitoring training task that requires precise time estimation. We used physical props and passive haptics in a VR task with high physical realism and compared it to an equivalent standard VR task with only virtual objects. We also used an identical real-world task as a baseline time estimation task. Each scenario includes the user picking up a device, opening a door, navigating a corridor with obstacles, performing five short time estimations, and estimating the total time from task start to end. Contrary to previous work, there was a consistent time dilation effect in all conditions, including the real world. However, no significant effects were found comparing the estimated differences between the high and low physical realism conditions. We discuss implications of the results and limitations of the study and propose future work that may better address this important question for virtual reality training.
READ FULL TEXT