Does SLOPE outperform bridge regression?

09/20/2019
by   Shuaiwen Wang, et al.
0

A recently proposed SLOPE estimator (arXiv:1407.3824) has been shown to adaptively achieve the minimax ℓ_2 estimation rate under high-dimensional sparse linear regression models (arXiv:1503.08393). Such minimax optimality holds in the regime where the sparsity level k, sample size n, and dimension p satisfy k/p → 0, k p/n → 0. In this paper, we characterize the estimation error of SLOPE under the complementary regime where both k and n scale linearly with p, and provide new insights into the performance of SLOPE estimators. We first derive a concentration inequality for the finite sample mean square error (MSE) of SLOPE. The quantity that MSE concentrates around takes a complicated and implicit form. With delicate analysis of the quantity, we prove that among all SLOPE estimators, LASSO is optimal for estimating k-sparse parameter vectors that do not have tied non-zero components in the low noise scenario. On the other hand, in the large noise scenario, the family of SLOPE estimators are sub-optimal compared with bridge regression such as the Ridge estimator.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro