Domain Adaptive Pretraining for Multilingual Acronym Extraction

06/30/2022
by   Usama Yaseen, et al.
0

This paper presents our findings from participating in the multilingual acronym extraction shared task SDU@AAAI-22. The task consists of acronym extraction from documents in 6 languages within scientific and legal domains. To address multilingual acronym extraction we employed BiLSTM-CRF with multilingual XLM-RoBERTa embeddings. We pretrained the XLM-RoBERTa model on the shared task corpus to further adapt XLM-RoBERTa embeddings to the shared task domain(s). Our system (team: SMR-NLP) achieved competitive performance for acronym extraction across all the languages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro