DraftRec: Personalized Draft Recommendation for Winning in Multi-Player Online Battle Arena Games

by   Hojoon Lee, et al.

This paper presents a personalized character recommendation system for Multiplayer Online Battle Arena (MOBA) games which are considered as one of the most popular online video game genres around the world. When playing MOBA games, players go through a draft stage, where they alternately select a virtual character to play. When drafting, players select characters by not only considering their character preferences, but also the synergy and competence of their team's character combination. However, the complexity of drafting induces difficulties for beginners to choose the appropriate characters based on the characters of their team while considering their own champion preferences. To alleviate this problem, we propose DraftRec, a novel hierarchical model which recommends characters by considering each player's champion preferences and the interaction between the players. DraftRec consists of two networks: the player network and the match network. The player network captures the individual player's champion preference, and the match network integrates the complex relationship between the players and their respective champions. We train and evaluate our model from a manually collected 280,000 matches of League of Legends and a publicly available 50,000 matches of Dota2. Empirically, our method achieved state-of-the-art performance in character recommendation and match outcome prediction task. Furthermore, a comprehensive user survey confirms that DraftRec provides convincing and satisfying recommendations. Our code and dataset are available at https://github.com/dojeon-ai/DraftRec.


page 2

page 7

page 8


Automatic Player Identification in Dota 2

Dota 2 is a popular, multiplayer online video game. Like many online gam...

Action2Score: An Embedding Approach To Score Player Action

Multiplayer Online Battle Arena (MOBA) is one of the most successful gam...

Interpretable Contextual Team-aware Item Recommendation: Application in Multiplayer Online Battle Arena Games

The video game industry has adopted recommendation systems to boost user...

Scalable Psychological Momentum Forecasting in Esports

The world of competitive Esports and video gaming has seen and continues...

A Genetic Programming Framework for 2D Platform AI

There currently exists a wide range of techniques to model and evolve ar...

Sequential Item Recommendation in the MOBA Game Dota 2

Multiplayer Online Battle Arena (MOBA) games such as Dota 2 attract hund...

Tachikuma: Understading Complex Interactions with Multi-Character and Novel Objects by Large Language Models

Recent advancements in natural language and Large Language Models (LLMs)...

Please sign up or login with your details

Forgot password? Click here to reset