Dynamic Bayesian Multinets

01/16/2013
by   Jeff A. Bilmes, et al.
0

In this work, dynamic Bayesian multinets are introduced where a Markov chain state at time t determines conditional independence patterns between random variables lying within a local time window surrounding t. It is shown how information-theoretic criterion functions can be used to induce sparse, discriminative, and class-conditional network structures that yield an optimal approximation to the class posterior probability, and therefore are useful for the classification task. Using a new structure learning heuristic, the resulting models are tested on a medium-vocabulary isolated-word speech recognition task. It is demonstrated that these discriminatively structured dynamic Bayesian multinets, when trained in a maximum likelihood setting using EM, can outperform both HMMs and other dynamic Bayesian networks with a similar number of parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset