Dynamic Causal Disentanglement Model for Dialogue Emotion Detection

by   Yuting Su, et al.

Emotion detection is a critical technology extensively employed in diverse fields. While the incorporation of commonsense knowledge has proven beneficial for existing emotion detection methods, dialogue-based emotion detection encounters numerous difficulties and challenges due to human agency and the variability of dialogue content.In dialogues, human emotions tend to accumulate in bursts. However, they are often implicitly expressed. This implies that many genuine emotions remain concealed within a plethora of unrelated words and dialogues.In this paper, we propose a Dynamic Causal Disentanglement Model based on hidden variable separation, which is founded on the separation of hidden variables. This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions, thereby enabling more precise emotion recognition. First, we introduce a novel Causal Directed Acyclic Graph (DAG) to establish the correlation between hidden emotional information and other observed elements. Subsequently, our approach utilizes pre-extracted personal attributes and utterance topics as guiding factors for the distribution of hidden variables, aiming to separate irrelevant ones. Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables, enabling the accumulation of emotion-related information throughout the conversation. To guide this disentanglement process, we leverage the ChatGPT-4.0 and LSTM networks to extract utterance topics and personal attributes as observed information.Finally, we test our approach on two popular datasets in dialogue emotion detection and relevant experimental results verified the model's superiority.


page 1

page 9

page 10


Building a Dialogue Corpus Annotated with Expressed and Experienced Emotions

In communication, a human would recognize the emotion of an interlocutor...

Neutral Utterances are Also Causes: Enhancing Conversational Causal Emotion Entailment with Social Commonsense Knowledge

Conversational Causal Emotion Entailment aims to detect causal utterance...

Topic-Driven and Knowledge-Aware Transformer for Dialogue Emotion Detection

Emotion detection in dialogues is challenging as it often requires the i...

EmotionLines: An Emotion Corpus of Multi-Party Conversations

Feeling emotion is a critical characteristic to distinguish people from ...

Contrast and Generation Make BART a Good Dialogue Emotion Recognizer

In dialogue systems, utterances with similar semantics may have distinct...

Extracting and Inferring Personal Attributes from Dialogue

Personal attributes represent structured information about a person, suc...

EmoDNN: Understanding emotions from short texts through a deep neural network ensemble

The latent knowledge in the emotions and the opinions of the individuals...

Please sign up or login with your details

Forgot password? Click here to reset