Dynamic tensor approximation of high-dimensional nonlinear PDEs

07/19/2020
by   Alec Dektor, et al.
0

We present a new method based on functional tensor decomposition and dynamic tensor approximation to compute the solution of a high-dimensional time-dependent nonlinear partial differential equation (PDE). The idea of dynamic approximation is to project the time derivative of the PDE solution onto the tangent space of a low-rank functional tensor manifold at each time. Such a projection can be computed by minimizing a convex energy functional over the tangent space. This minimization problem yields the unique optimal velocity vector that allows us to integrate the PDE forward in time on a tensor manifold of constant rank. In the case of initial/boundary value problems defined in real separable Hilbert spaces, this procedure yields evolution equations for the tensor modes in the form of a coupled system of one-dimensional time-dependent PDEs. We apply the dynamic tensor approximation to a four-dimensional Fokker-Planck equation with non-constant drift and diffusion coefficients, and demonstrate its accuracy in predicting relaxation to statistical equilibrium.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset