E-detectors: a nonparametric framework for online changepoint detection

03/07/2022
by   Jaehyeok Shin, et al.
0

Sequential changepoint detection is a classical problem with a variety of applications. However, the majority of prior work has been parametric, for example, focusing on exponential families. We develop a fundamentally new and general framework for changepoint detection when the pre- and post-change distributions are nonparametrically specified (and thus composite). Our procedures come with clean, nonasymptotic bounds on the average run length (frequency of false alarms). In certain nonparametric cases (like sub-Gaussian or sub-exponential), we also provide near-optimal bounds on the detection delay following a changepoint. The primary technical tool that we introduce is called an e-detector, which is composed of sums of e-processes – a fundamental generalization of nonnegative supermartingales – that are started at consecutive times. We first introduce simple Shiryaev-Roberts and CUSUM-style e-detectors, and then show how to design their mixtures in order to achieve both statistical and computational efficiency. We demonstrate their efficacy in detecting changes in the mean of a bounded random variable without any i.i.d. assumptions, with an application to tracking the performance of a sports team over multiple seasons.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro