ECOTS: Early Classification in Open Time Series
Learning to predict ahead of time events in open time series is challenging. While Early Classification of Time Series (ECTS) tackles the problem of balancing online the accuracy of the prediction with the cost of delaying the decision when the individuals are time series of finite length with a unique label for the whole time series. Surprisingly, this trade-off has never been investigated for open time series with undetermined length and with different classes for each subsequence of the same time series. In this paper, we propose a principled method to adapt any technique for ECTS to the Early Classification in Open Time Series (ECOTS). We show how the classifiers must be constructed and what the decision triggering system becomes in this new scenario. We address the challenge of decision making in the predictive maintenance field. We illustrate our methodology by transforming two state-of-the-art ECTS algorithms for the ECOTS scenario and report numerical experiments on a real dataset for predictive maintenance that demonstrate the practicality of the novel approach.
READ FULL TEXT