Effects of interventions and optimal strategies in the stochastic system approach to causality

07/30/2019
by   Daniel Commenges, et al.
0

We consider the problem of defining the effect of an intervention on a time-varying risk factor or treatment for a disease or a physiological marker; we develop here the latter case. So, the system considered is (Y,A,C), where Y=(Y_t), is the marker process of interest, A=A_t the treatment. A realistic case is that the treatment can be changed only at discrete times. In an observational study the treatment attribution law is unknown; however, the physical law can be estimated without knowing the treatment attribution law, provided a well-specified model is available. An intervention is specified by the treatment attribution law, which is thus known. Simple interventions will simply randomize the attribution of the treatment; interventions that take into account the past history will be called "strategies". The effect of interventions can be defined by a risk function R^=_[L(Y̅_t_J, A̅_t_J,C)], where L(Y̅_t_J, A̅_t_J,C) is a loss function, and contrasts between risk functions for different strategies can be formed. Once we can compute effects for any strategy, we can search for optimal or sub-optimal strategies; in particular we can find optimal parametric strategies. We present several ways for designing strategies. As an illustration, we consider the choice of a strategy for containing the HIV load below a certain level while limiting the treatment burden. A simulation study demonstrates the possibility of finding optimal parametric strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro