Efficient Adaptive Stochastic Collocation Strategies for Advection-Diffusion Problems with Uncertain Inputs

10/07/2022
by   Benjamin M. Kent, et al.
0

Physical models with uncertain inputs are commonly represented as parametric partial differential equations (PDEs). That is, PDEs with inputs that are expressed as functions of parameters with an associated probability distribution. Developing efficient and accurate solution strategies that account for errors on the space, time and parameter domains simultaneously is highly challenging. Indeed, it is well known that standard polynomial-based approximations on the parameter domain can incur errors that grow in time. In this work, we focus on advection-diffusion problems with parameter-dependent wind fields. A novel adaptive solution strategy is proposed that allows users to combine stochastic collocation on the parameter domain with off-the-shelf adaptive timestepping algorithms with local error control. This is a non-intrusive strategy that builds a polynomial-based surrogate that is adapted sequentially in time. The algorithm is driven by a so-called hierarchical estimator for the parametric error and balances this against an estimate for the global timestepping error which is derived from a scaling argument.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset