Efficient Graph-based Tensile Strength Simulations of Random Fiber Structures

10/06/2020
by   Marc Harmening, et al.
0

In this paper, we propose a model-simulation framework for virtual tensile strength tests of random fiber structures, as they appear in nonwoven materials. The focus is on the efficient handling with respect to the problem-inherent multi-scales and randomness. In particular, the interplay of the random microstructure and deterministic structural production-related features on the macro-scale makes classical homogenization-based approaches computationally complex and costly. In our approach we model the fiber structure to be graph-based and of truss-type, equipped with a nonlinear elastic material law. Describing the tensile strength test by a sequence of force equilibria with respect to varied boundary conditions, its embedding into a singularly perturbed dynamical system is advantageous with regard to statements about solution theory and convergence of numerical methods. A problem-tailored data reduction provides additional speed-up, Monte-Carlo simulations account for the randomness. This work serves as a proof of concept and opens the field to optimization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro