Efficient Quantum Voting with Information-Theoretic Security

12/28/2021
by   Emil T. Khabiboulline, et al.
0

Ensuring security and integrity of elections constitutes an important challenge with wide-ranging societal implications. Classically, security guarantees can be ensured based on computational complexity, which may be challenged by quantum computers. We show that the use of quantum networks can enable information-theoretic security for the desirable aspects of a distributed voting scheme in a resource-efficient manner. In our approach, ballot information is encoded in quantum states that enable an exponential reduction in communication complexity compared to classical communication. In addition, we provide an efficient and secure anonymous queuing protocol. As a result, our scheme only requires modest quantum memories with size scaling logarithmically with the number of voters. This intrinsic efficiency together with certain noise-robustness of our protocol paves the way for its physical implementation in realistic quantum networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset